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1 Introduction

The supersymmetric Maldacena-Wilson [1, 2] loops in N = 4 supersymmetric Yang-Mills

theory (SYM) were recently generalized to include a class of contours contained in an S3,

which also include a path-dependent coupling to the scalar fields of the theory [3, 4]. A

subset of those Wilson loops are contained in a great S2 and their discoverers pointed out

an exact solvability and a potential connection to QCD2 [3, 5]. These loops are given by

(we consider our S2 in hyperplane x0 = 0)

W =
1

N
TrP exp

∮
dτ
(
i ẋiAi + ǫijk x

j ẋk M i
I ΦI

)
(1.1)

where xi(τ) (where i = 1, . . . , 3, I = 1, . . . , 6) is a closed path on S2, and M i
I is a 3 × 6

matrix satisfying MMT = 1 and which we will take to be M i
i = 1/R (no summation

implied and R is the S2 radius) and all other entries zero. At the level of the vacuum

expectation value (VEV) there is considerable evidence that1

〈W 〉 =
1

N
L1

N−1

(
−g2 A1A2

A2

)
exp

(
g2 A1A2

2A2

)
, (1.2)

where A1 is the area on the sphere enclosed by the Wilson loop, while A = A1 + A2 is

the total sphere area. To begin with, the 1/2 BPS circle (given by an equator) has been

proved to be given by (1.2) [6–8] and there are strong arguments in favour of the 1/4 BPS

circle of [9] (given by a latitude) also being captured by (1.2). At O(g2), (1.2) was proven

1Lm
n is the Laguerre polynomial Lm

n (x) = 1/n! exp[x]x−m(d/dx)n(exp[−x]xn+m).

– 1 –
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for general contours in [3, 4]. This result was further confirmed at O(g4) in [10, 11]. The

significance of the result is that it agrees with the calculation of the VEV of the Wilson

loop in QCD2 on an S2 in the zero instanton sector [12] with the couplings related by2

g2
2d = −g

2

A . (1.3)

The idea that a class of N = 4 SYM Wilson loops might be exactly solvable and equivalent

to Wilson loops in a lower dimensional theory is very attractive, and hints at a relationship

between two very different quantum field theories. More specifically one could infer that

the localization procedure presented in [8] could also apply to this more general class, point-

ing towards the existence of a sector of non-local topological observables in N = 4 SYM.

Standard field theoretical arguments should then suggest the presence of protected local op-

erators arising in the OPE of the Wilson loop (see [13] for related research in this direction).

To substantiate these ideas we need to go beyond the level of the one-point function

of Wilson loops and consider correlators of loops. A first step in this direction was under-

taken in [11], where a perturbative computation of the correlator of two latitudes at order

O(g6) was undertaken. Lacking a zero-instanton QCD2 result to compare to, in [11] the

generalization to S2 of the Wu-Mandelstam-Leibbrandt (WML) [14–16] prescription for

QCD2 in the plane proposed in [3, 4] was used. Indeed, this prescription has been recently

shown to be equivalent to the zero-instanton QCD2 result [36].3

In the present paper we derive a general formula for correlators of BPS Wilson loops

with arbitrary contours on S2 in terms of the multi-matrix model governing the zero in-

stanton expansion of QCD2. The result is valid for any coupling constant g and for any

value of N : we compute explicitly the matrix integral for the correlator of two loops.

Our general expression survives a series of non-trivial tests. First of all we calculate in

N = 4 perturbation theory the correlator of two latitude Wilson loops at O(g4), finding

perfect agreement with the matrix model result. Next we provide compact formulas for

the perturbative O(g6) contribution, generalizing the results of [10], from which a numer-

ical evaluation can be easily performed (we will report on this point in the future [18]).

Here we prefer instead to investigate analytically the limit where one of the two latitudes

shrinks to zero size: because our nonperturbative formula is an order by order polynomial

in the shrinking radius, the absence of logarithmic terms is a crucial test of the matrix

representation. We find indeed the absence of leading logarithms in the shrinking radius, a

quite non-trivial result, differing dramatically from the analogous computation of non-BPS

correlators [19] where logs are present.

Interestingly, by analyzing the OPE of the shrinking Wilson loop one can relate the ab-

sence of the logarithmic terms to the protection of a local operator which may be expressed

as the trace of the square of a twisted field strength. Work [13] concerning super-protected

local operators could be extended to also include this novel operator, which is based on

very similar symmetries. We discuss this issue in section 2.

2We use different conventions for the Yang-Mills actions in two and four dimensions that differ by a

factor two, in keeping with the original references on the subject.
3A disagreement was erroneously present in [11].
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Figure 1. Two Wilson loops given by latitudes at polar angles θ10 and θ20.

Armed with our general result we can therefore take the large N and strong coupling

limit and try to compare it to the N = 4 correlator from the string side. In the limit

that the two latitudes shrink to opposite poles on the sphere, this calculation reduces

to the semi-classical exchange of supergravity (SUGRA) modes between the two string

worldsheets describing the Wilson loops at strong coupling. We find that at leading order

in the large-separation limit, the matrix model result seems to capture the exchange of

the SUGRA modes dual to a certain chiral primary operator. Other modes, dual to other

protected operators present in the weak coupling OPE, should also be carefully included

to test definitively this result at strong coupling. We find moreover an intriguing pattern

of matching between the QCD2 result and the exchange of heavier modes dual to chiral

primary operators of higher dimension, which seems to extend to arbitrary order in the

large-separation expansion. We have not yet understood the meaning of this highly non-

trivial pattern of matching.

In this paper we present a survey of our investigations, deferring a complete analysis

with all the relevant technical details to a future publication.

Note added: as this manuscript was being completed [20] appeared, presenting a partial

overlap with the results of this paper.

2 Symmetries of the loops and of their correlators

We start by considering N = 4 SYM Wilson loops that are a special case of the general

construction presented in [3, 4]. They are 1/4 BPS supersymmetric loops with the contour

defined on a latitude of S2, first put forward in [9]. Writing the Wilson loop as

W =
1

N
TrP exp

∮
dτ
(
i ẋµAµ + |ẋ|ΘI ΦI

)
, (2.1)

the latitudes are given by the following closed paths on an S2 ⊂ R
4 and on another S2 ⊂ S5

which gives the coupling to the scalar fields ΦI (µ = 1, . . . , 4, I = 1, . . . , 6),

xµ =R (sin θ0 cos τ, sin θ0 sin τ, cos θ0, 0), ΘI =(− cos θ0 cos τ,− cos θ0 sin τ, sin θ0, 0, 0, 0).

Two such Wilson loops are pictured in figure 1. The supersymmetries preserved by

these operators are fully described in [3], see section 2.3.1: here we just repeat some details

of that analysis which are relevant to our work.

– 3 –
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Under general superconformal transformations we have for the N = 4 SYM bosons

δǫAµ = Ψ̄γµ ǫ, δǫΦi = Ψ̄Γi ǫ, ǫ = ǫ0 + xµγµǫ1. (2.2)

Demanding that δǫW = 0 one finds two relations

γ12 ǫ1 = −Γ12 ǫ1,

Γ3 ǫ0 =
[
iγ12 + cos θ0 γ3Γ2(γ23 + Γ23)

]
ǫ1.

(2.3)

It is clear that each of them reduce the supersymmetry by half, and therefore a single

latitude is 1/4 BPS. We will be mainly interested in the correlator of two such Wilson

loops, as shown in figure 1. The first relation in (2.3) is shared between two such latitudes,

whereas the second is clearly not. Thus two latitudes are collectively 1/8 BPS, each sharing

half of their individual supersymmetry. The same reasoning applies of course to a collection

of n latitudes, resulting always in a 1/8 BPS system.

2.1 Operator product expansion

In the next section we will present results of a perturbative calculation of the correlator of

two latitudes and, in particular, we will consider the limit where one of the latitudes shrinks

to a point at the pole of the sphere. The emerging structure can be usefully understood in

terms of the OPE and its physical meaning is quite transparent.

The crucial observation is that, viewed from a comparably large distance, the un-

shrunken Wilson loop sees the shrunken loop as a collection of local operators [21]: the

quantum behavior is encoded into Wilson coefficients and anomalous dimensions. The

story was worked out in detail for two circular Wilson-Maldacena loops in [19]. Here, for

the 1/4 BPS latitude, we will find that the relevant OPE is quite different, giving rise to

novel operators which appear to have protected dimensions.

When analysing the OPE, we can in fact consider the general situation of loops with

arbitrary contours on S2 that are generically 1/8 BPS. As noticed in [3] the Wilson

loop (1.1) can be written in terms of a new gauge connection

Ai = Ai + iǫijk x
j Φk

R
. (2.4)

The OPE expansion will appear particularly simple using this generalized connection.4

The first step is to determine the classical expansion of our Wilson loops in terms of local

gauge-invariant operators when the circuit is small. To achieve this goal we shall assume

that the circuit can be written as follows

xi(t) = xi
0 + rx̂i(t), (2.5)

x0 being the point about which the loop is shrinking and r a parameter that will control

the limit. We expand the contour integral by exploiting the Fock-Schwinger gauge (x −
x0)

iAi(x) = 0, where the following formula holds in terms of the new gauge curvature Fji

Ai(x) =

∫ 1

0
dλλ(x− x0)

jFji(x0 + λ(x− x0)). (2.6)

4We thank Nadav Drukker for suggesting this course of investigation to us.
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The leading order result is given by

∮

C
dtAi(x)ẋ

i =
r2

2
Fij(x0)

∮

C
dtx̂i(t) ˙̂x(t) +O(r3) =

r2

2
ǫijkFij(x0)nk(x0) +O(r3), (2.7)

ni(x0) being a normal vector to S2 at the point x0, depending on x0 and the contour.

The expansion could of course be extended to any given order in r, producing a series of

local operators OJ
C(x) determined by the particular shape of the Wilson loop, the general-

ized connection Ai itself depending on the contour. Because these operators should share

the BPS properties of the associated Wilson loop, we obtain a practical realization of the

proposal of [13]: in particular we could expect that their correlation functions, when re-

stricted to the relevant S2, are somehow protected from quantum corrections. This would

imply severe constraints on Wilson loop correlators. Let us exemplify the consequences for

latitude correlators (we will consider here for simplicity the SU(N) case).

In our specific example we take as our shrinking point the north pole, x0 = R(0, 0, 1),

while r = sin θ0 and x̂i(t) = R(cos t, sin t, tan θ0
2 ). Due to the trace in the path-exponential

the first non-vanishing contribution to the OPE is quadratic in the fields, and we get

explicitly at leading order

W0 = 1 +
π2 sin θ4

0

2N
OF (x0) (2.8)

where

OF (x0) = Tr
[
2RΦ3 − iR2 F12 −R2 (∂1Φ1 + ∂2Φ2)

]2
. (2.9)

We note a peculiar feature that makes this OPE quite different from the usual circular

Wilson-Maldacena case [19]: operators of classical dimension 2, 3, and 4 all couple with

the same power of the parameter which sets the size of the shrinking latitude: the polar

angle θ (in the standard case the power is the classical dimension itself). Indeed the overall

scale R of the S2 is just a place keeper. The conformality of N = 4 SYM prevents it from

playing any rôle, and it drops out of the calculation of any observable.

We notice that we can easily obtain the leading term of the two latitude correlator at

order g4 from the OPE (2.8), once we restore the canonical normalization for the fields.

We just need to compute the correlation function

〈OF (x0)

∮
dt
(
ẋi

1Ai(x1) − iǫijk x
j
1ẋ

k
1 Φi(x1)

)
〉 = i

cos (θ1) + 1

4π
, (2.10)

that enters in the Wick contraction. Taking the relevant color traces we get

〈W0W1〉
〈W0〉〈W1〉

− 1 =
g4

8

(
2 sin2 θ0

2
cos2 θ1

2

)2

=
g4r4

32
cos2 θ1

2
. (2.11)

The above result will be confirmed in the next section by the finite size correlator. Actually

we can learn something more: the general expectation for the structure of the OPE of a

shrinking Wilson loop is given by [19, 21, 24]

W

〈W 〉 = 1 +
∑

J

ξJ(g2)L∆J OJ(x) (2.12)

– 5 –
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where L is the size of the shrinking loop, and OJ(x) is an operator of classical dimension

J and quantum dimension ∆J = J + g2 ∆
(1)
J + · · · . The Wilson coefficients ξJ(g2) depend

on the coupling constant g2. The curious structure of the latitude OPE is a reflection

of the fact that the coefficients ξJ(g2) which describe the coupling of the Wilson loop

to a specific operator OJ(x) are themselves functions of θ [27], and can be expanded as

ξJ(g2, θ) =
∑

k ξ
(k)
J (g2) θk in the limit θ → 0. This provides us with the general structure

for the OPE of W0

W0

〈W0〉
= 1 +

∑

J

ξJ(g2, θ0) θ
∆J
0 OJ(x0) = 1 +

∑

J, k

ξ
(k)
J (g2) θ∆J+k

0 OJ(x0) =

= 1 + ξ
(2)
2 θ∆2+2

0 O2(x0) + ξ
(1)
3 θ∆3+1

0 O3(x0) + ξ
(0)
4 θ∆4

0 O4(x0) + · · · ,
(2.13)

where we have dropped the scale R (to restore it replace OJ (x0) → R∆J OJ(x0)), and have

noted the vanishing of ξ
(0,1)
2 and ξ

(0)
3 from the explicit expression of (2.9). The explicit form

of O2,3,4(x0) is simply obtained from OF (x0). Actually there are multiple operators of the

same classical dimension, so there is an extra suppressed index on the ξJ(g2, θ0), ∆J , and

OJ (x0), which is implicitly summed over in (2.13). In the last line we are referring only to

the operators appearing in (2.9) as these are the only ones present at leading order in θ0.

We derive the following general relation in the shrinking limit

〈W1W0〉
〈W1〉〈W0〉

=1 + ξ
(2)
2 θ∆2+2

0 〈W1O2(x0)〉 + ξ
(1)
3 θ∆3+1

0 〈W1O3(x0)〉

+ ξ
(0)
4 θ∆4

0 〈W1O4(x0)〉 + · · · .
(2.14)

We notice that when expanded at small coupling the θ∆J
0 terms generically produce loga-

rithms θ∆J
0 = θJ

0 +g2 ∆
(1)
J θJ

0 log θ0 + · · · if quantum corrections modify the classical dimen-

sions. The quantities ξ
(2)
2 , ξ

(1)
3 , and ξ

(0)
4 may easily be read-off in our case from (2.9). Since

the operators appearing in the explicit expression are quadratic in the fields, one has that

ξ
(2)
2 , ξ

(1)
3 , and ξ

(0)
4 lead as g4. We therefore generally expect terms of the form g6 log θ0 to

show up in the perturbative expansion of the correlator at order g6, in the shrinking limit.

The presence of logarithmic corrections would be a signal that anomalous dimensions

are playing a part, suggesting that the full interacting theory should be taken into account

and localization techniques would not be sufficient in the exact computation. It would

also rule out the relation with two-dimensional Yang-Mills that produces just polynomial

dependence on θ at any order of perturbation theory, as we will see in section 4. In section 3

we show that, surprisingly, no such logarithmic terms appear at order g6, supporting the

matrix model proposal. This indicates that the composite operator O(x), arising from the

OPE of the BPS loops (1.1), should be protected - at least at the first non-trivial quantum

order. In other words logarithmic divergences should be absent in the two-point function

〈O(x1)O(x2) 〉, when x1,2 belong to the relevant S2, in the same way as the operators

defined in [13]. It is not difficult to show in fact that O(x) inherits the BPS properties of

the latitude loop, and a certain amount of supersymmetry is preserved by its correlators.

– 6 –
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Figure 2. g2−diagram

3 Perturbative results on Wilson loop correlators

In this section we perform a perturbative analysis up to order5 g6 for the connected corre-

lator W(C1, C2) ≡ W (C1, C2) −W (C1)W (C2) of two latitudes in the case that the gauge

group is U(N). To begin with, we shall consider the g2 diagram depicted in figure 2.

[Notice that this contribution would be absent in a SU(N)theory.]

In order to carry out the computation, we parameterize the two circuits using polar coor-

dinates

C1 =R(sin θ1 cos τ, sin θ1 sin τ, cos θ1)

C2 =R(sin θ2 cos σ, sin θ2 sinσ, cos θ2),
(3.1)

and define the effective propagator ∆C1C2(τ, σ) connecting the two loops

∆C1C2(τ, σ) =
2

N
〈Tr(A)(τ)Tr(A)(σ)〉0

= − sin θ1 sin θ2 (cos (τ − σ) (cos θ1 cos θ2 − 1) + sin θ1 sin θ2)

8π2 (cos θ1 cos θ2 + cos (τ − σ) sin θ1 sin θ2 − 1)
,

(3.2)

where A denotes the effective field iAµ(x)ẋµ +ΘIΦ
I(x)|ẋ|. Then the g2−contribution is

given by

W(C1, C2)|g2 =
g2

2N

∫ 2π

0
dτdσ ∆C1C2(τ, σ) =

λ

N2

A1A2

A2
(λ ≡ g2N), (3.3)

where A is the total area of the sphere, and A1 and A2 are the areas enclosed by the two

Wilson-loops given by

A1

A
=

2π(1 − cos θ1)

4π
= sin2 θ1

2

A2

A
=

2π(1 + cos θ2)

4π
= cos2 θ2

2
. (3.4)

At order g4, we have to consider the diagrams in figure 3. First, we shall consider the

contribution Sg2−g2 due to diagram (b1). Its evaluation reduces to the following integral

over the circuits

Sg2−g2 =
g4

16

∫ 2π

0
dτ1dτ2dσ1dσ2

[
∆C1C2

(τ1, σ1)∆C1C2
(τ2, σ2) + ∆C1C2

(τ1, σ2)∆C1C2
(τ2, σ1)

]
=

=
g4

8

[∫ 2π

0
dτ1dσ1∆C1C2(τ1, σ1)

]2

=
g4

8

[
2 sin2 θ1

2
cos2 θ2

2

]2

=
λ2

2N2

A2
1A

2
2

A4
. (3.5)

Next we shall consider the contribution Sg−g3 due to the two diagrams (b2). The sum of

5Only at this order do the interactions start contributing to the connected Greens functions.
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(b
1
) (b

2
)

Figure 3. g4 diagrams

Figure 4. Triple-exchange: (a) planar diagram; (b) non-planar diagram.

Figure 5. (a) X-diagram; (b) H-diagram.

the two diagrams yields

Sg−g3 =
g4

4!

∮

C1

dτ1

∮

C2

dσ1dσ2dσ3(∆C1C2
(τ1, σ1)∆C2C2

(σ2, σ3) + ∆C1C2
(τ1, σ2)∆C2C2

(σ1, σ3)+

+∆C1C2
(τ1, σ3)∆C2C2

(σ1, σ2)) + (C1 ↔ C2) = (3.6)

=
g4

16

(
2 sin2 θ1

2
cos2 θ2

2

)
(sin2 θ1 + sin2 θ2) =

λ2

2N2A4
A1A2(A1A3 +A2A3 + 2A1A2),

where ∆C2C2(σi, σj) = sin2 θ2
8π2 and A3 = A − A1 − A2. If we sum all the contributions at

order g4, the total result is

W(C1, C2)|g4 =
λ2

2N2A4
A1A2(A1A3 +A2A3 + 3A1A2). (3.7)

A remark on the Sg2−g2 contribution is in order. This is the only contribution in a SU(N)

theory and one can verify that its small r−expansion is in agreement with the OPE result

[ 2.11], supporting the idea that the leading contribution to the Wilson-loop is determined

only by OF .

We now come to considering the g6 contribution. Since, at this order, the N =

4 interactions will start contributing, a complete analytic evaluation of all the relevant

integrals is out of reach. However one can write compact formulas which can be used as a

starting point for a numerical evaluation [18]. We shall exploit this possibility in a future

– 8 –
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paper. Here we shall instead be interested in singling out the coefficients of contributions

of the form rk log(r), potentially present in the evaluation of the connected correlator. The

knowledge of these coefficients already provides non trivial information on the properties

of the correlator. In fact, as explained in the previous section, a non-vanishing result for

these coefficients would clash with the expectation that the correlator localizes.

For this computation, we limit our attention to the gauge group SU(N) and we can sep-

arate the diagrams into two classes: the ladder diagrams and the interaction diagrams.

The ladder diagrams are depicted in figure 4 and it is easy to realize that they cannot

generate any contribution of the form rk log(r). They are actually analytic in the small

r−limit. The contributions rk log(r) are instead generated by the interactions diagrams in

figures 5 and 6. The origin of this non analytic behavior can be traced back to the small

distance singularities appearing in the integration over the position of the vertices. Thus in

order to extract these logarithmic singularities, we have to first perform these integrations

analytically, and only after that can we expand in powers of the radius. To illustrate the

procedure let us start by considering the X-diagram. Its expression can be cast into the

following compact form

X =
λ3

8N2

∫ 2π

0
dτ1dτ2dσ1dσ2 [(ẋ1 ◦ ẏ2)(ẋ2 ◦ ẏ1)−

−(ẋ1 ◦ ẋ2)(ẏ1 ◦ ẏ2)] I(4)(x1, x2, y1, y2),

(3.8)

where (ẋ ◦ ẏ) = ẋ · ẏ − |ẋ||ẏ|Θẋ · Θẏ with |ẋ|ΘI
ẋ = M i

Iǫirsẋ
rxs and

I(4)(x1, x2, y1, y2) ≡
1

(2π)8

∫
d4w

(x1 − w)2(x2 − w)2(y1 − w)2(y2 −w)2
. (3.9)

Here and in the following xi ≡ x(τi) and yi ≡ y(σi) will denote points on the upper and

lower latitudes respectively (see figure 1). The integration over w in (3.9) can be performed

and it is then straightforward to extract the singular part when we shrink the latitude θ = θ1
to the north-pole of the sphere S2 (see appendix A for details.) The singular part is given by

I(4)sing.(x1, x2, y1, y2) = − log r

128π6
×

×
∫ 1

0

dα

(1 − α)(y1 − x2)
2(y2 − x1)

2 − α(1 − α)(x1 − x2)
2(y1 − y2)

2 + α(y1 − x1)
2(y2 − x2)

2
,

(3.10)

where r = sin θ1. The integration over the circuit is straightforward and can be evaluated

by Taylor-expanding in r. At leading order we find that

Xsing =
5r4 cos4

(
θ2
2

)
log(r)

768π2
+O(r5). (3.11)

Consider now the H−diagram in figure (5). We can write the contribution from this
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diagram as follows

H = − λ3

8N2

∫
d4w

[
PM (x1, y1, w)�wP

M (x2, y2, w)
A1

+ PM (x1, y1, w)�wQ
M (x2, y2, w)

B1

+

+ QM (x1, y1, w)�wP
M (x2, y2, w)

B2

+QM (x1, y1, w)�wQ
M(x2, y2, w)

A2

]
,

(3.12)

where

PM (xi, yi, w) =

∫ 2π

0
dτidσi

[
2ẏi

M (ẋi · ∂yi
Ii(xi, yi, w)) − 2ẋM

i (ẏi · ∂xi
Ii(xi, yi, w))

]
(3.13)

and

QM (xi, yi, w) =

∫ 2π

0
dτidσi(ẋi ◦ ẏi)(∂xM

i
Ii(xi, yi, w) − ∂yM

i
Ii(xi, yi, w)). (3.14)

In eqs. (3.12), (3.13) and (3.14), the index M is a ten-dimensional label running from 1 to

10 and in particular we have defined xM ≡ (xµ, iΘI |ẋ|) and ∂M ≡ (∂µ, 0). The function

I1(xi, yi, w) is defined by the scalar integral

I1(xi, yi, w) =
1

(2π)6

∫
d4z

(xi − z)2(yi − z)2(w − z)2
. (3.15)

The spatial components Pµ of PM satisfy the following two simple identities: zµP
µ =

∂µP
µ = 0, as can easily be checked by direct computation. Moreover, for two latitudes

parallel to the plane (2, 3), P 1 and P 4 trivially vanish. Since Pµ is a just a function of zµ,

all these properties are consistent if and only if Pµ = 0. This result simplifies dramatically

the computation for the correlator of two latitudes: in fact the contributions B1 and B2

in (3.12) are identically zero. Recall, in fact, that QM is different from zero (by construc-

tion) only when M is spatial. Thus we are just left with A1 and A2 to be computed.

Let us first compute first A2. It is convenient to rewrite this contribution as follows

A2 =
λ3

8N2

∫ 2π

0
dτ1dτ2dσ1dσ2ẋ1 ◦ ẏ1ẋ2 ◦ ẏ2(∂x1 − ∂y1) · (∂x2 − ∂y2)H(x1, y1;x2, y2), (3.16)

where

H(x1, y1;x2, y2) =
1

(2π)10

∫
d4zd4w

(x1 − z)2(y1 − z)2(z − w)2(x2 − w)2(y2 − w)2
. (3.17)

The action of (∂x1 − ∂y1) · (∂x2 − ∂y2) on H(x1, y1;x2, y2) can then be evaluated with the

identity (A.7) given in [25]. One finds

(∂x1 − ∂y1)·(∂x2 − ∂y2)H(x1, y1;x2, y2) =

=
1

(x1−y1)2(x2−y2)2

[
I(4)(x1, y1, x2, y2)((x1−x2)

2(y1−y2)
2−(x1−y2)

2(x2−y1)
2)+

+
1

(2π)2
(Y (x1, x2, y2) − Y (y1, x2, y2) + Y (x2, x1, y1) − Y (y2, x1, y1))

]
,

(3.18)
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where Y (x1, x2, x3) ≡ I1(x1, x2, x3)[(x1−x3)
2−(x1−x2)

2]. When the first latitude (θ = θ1)

is shrunk to zero the logarithmically divergent terms can be generated by I(4) and by the

Y that depends both on x1 and x2. Therefore we can write

A
sing.
2 =

λ3

8N2

∫ 2π

0
dτ1dτ2dσ1dσ2

(ẋ1 ◦ ẏ1)(ẋ2 ◦ ẏ2)

(x1−y1)2(x2−y2)2

[
I(4)sing.(x1, y1, x2, y2)((x1 − x2)

2(y1−y2)
2−

− (x1 − y2)
2(x2 − y1)

2) +
1

(2π)2
(Y sing.(x1, x2, y2) + Y sing.(x2, x1, y1))

]
,

(3.19)

where we have defined

Y sing.(x1, x2, y2) ≡ Ising.
1 (x1, x2, y2)[(x1 − y2)

2 − (x1 − x2)
2]

and

Y sing.(x2, x1, y2) ≡ Ising.
1 (x1, x2, y2)[(x2 − y2)

2 − (x2 − x1)
2].

The expression for Ising.
1 is given in appendix A. The integration over the circuits can then

be easily performed with the help of Mathematica if we first expand the integrand of (3.19)

in powers of r. At leading order we find

A
sing.
2 = −

7r4 cos4
(

θ2
2

)
log(r)

1536π2
+O(r5). (3.20)

To complete the evaluation of the H−diagram we have to compute the contribution A1.

The first step is to add two total derivatives to the integrand of PM

PM (x1, y1, w) =

∫ 2π

0
dτ1

∫ 2π

0
dσ1


2ẏ1

M (ẋ1 · ∂y1I1(y1−w, x1 − w)−ẋ1 · ∂x1I2(y1−w, x1−w)︸ ︷︷ ︸
K1

)−

− 2ẋM
1 (ẏ1 · ∂x1I1(x1 −w, y1 − w) − ẏ1 · ∂y1I2(x1 − w, y1 − w))︸ ︷︷ ︸

K2

)


 .

(3.21)

These two new terms obviously yield a vanishing result when the integration runs along

the circuits. The function I2(x, y) is defined in appendix A. Since the following identity

for I1 and I2 holds [10]

∂

∂xµ
I1(x, y) −

∂

∂yµ
I2(x, y) = − 1

32π4

xµ

x2

log
(

(x−y)2

y2

)

[(x− y)2 − y2]
, (3.22)

the combination K1 appearing in PM can be rearranged in the following compact form

K1 = − 1

64π4(y1 − w)2
d

dτ1

[
Li2

(
1 − (x1 − y1)

2

(x1 − w)2

)
+

1

2

(
log

[
(x1 − w)2

(x2 − y2)2

])2
]

+

+
1

32π4

(x1 − w) · ẋ1

(x1 − w)2(y1 − w)2
log

(
(x1 − y1)

2

(x2 − y2)2

)
.

(3.23)
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The combination K2 can be also recast into the same form. The only difference from (3.23)

is that the roles of x1 and y1, and of τ1 and σ1, are exchanged. The terms in K1 and K2

that are total derivatives with respect to τ1 and σ1 can be dropped since they yield a

vanishing contribution to PM , and we are left with the compact expression

PM (x1, y1, w) =
1

16π4

∫ 2π

0
dτ1dσ1

ẏ1
M (x1 − w) · ẋ1 − ẋM

1 (y1 − w) · ẏ1

(x1 − w)2(y1 − w)2
log

(
(x1 − y1)

2

(x2 − y2)2

)
.

(3.24)

Then, if we take into account that

−�wP
M (x2, y2, w) =

∫ 2π

0
dτ1dσ1

[
2ẏ2

M ẋ2 · ∂y2 − 2ẋM
2 ẏ2 · ∂x2

] 1

(2π)4
1

(x2 − w)2(y2 − w)2
,

(3.25)

we can rewrite the A1 contribution in the following form

A1 =
λ3

4N2

∫ 2π

0
dτ1dτ2dσ1dσ2 log

(
(x1 − y1)

2

(x2 − y2)2

)[
[(ẏ1 ◦ ẏ2)ẋ2 · ∂y2 − (ẏ1 ◦ ẋ2)ẏ2 · ∂x2 ]×

× ẋ1 · S(x1, x2, y1, y2) − [(ẋ1 ◦ ẏ2)ẋ2 · ∂y2 − (ẋ1 ◦ ẋ2)ẏ2 · ∂x2]ẏ1 · S(x1, x2, y1, y2)

]

(3.26)

where

Sµ(x1, x2, y1, y2) ≡ − 1

(4π2)4

∫
d4w

wµ

(x1 − w)2(y1 − w)2(x2 − w)2(y2 − w)2
. (3.27)

The nice feature of (3.26) is the disappearance of one of the integrations over the position

of the vertices. Although this result simplifies the procedure for extracting the logarithmic

terms appearing in the limit θ1 → 0, the computation is still a little bit cumbersome and

some of the details are given in appendix A. Here we shall only give the final result after

the integration over the circuits. At the leading order in r(≡ sin θ1), we find

A1 =
r4 cos4

(
θ2
2

)
log(r)

512π2
(3.28)

The final set of diagrams to compute are depicted in figure 6. We have two contributions

that we call respectively IYup [(c) in figure 6] and IYdown [(d) in figure 6], and a diagram

which takes into account the one-loop correction to the effective propagator [(e) in figure 6].

We shall denote this third diagram by Budiag. To begin with we focus our attention on

IYup, whose expression is

IYup =
λ3J

8N2

∫ 2π

0
dτ1dτ2dτ3dσ2ε(τ1, τ2, τ3){(ẋ1 ◦ ẏ2)ẋ2 · (∂y2 − ∂x1)

− (ẋ1 ◦ ẋ2)ẏ2 · ∂x2}I1(x1, x2, y2),

(3.29)

and on IYdown, which is obtained from IYup by exchanging the roles of σ and τ (and
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Figure 6. The two “IY-diagrams” and the self-energy correction.

therefore xi and yi). Here J is the constant defined by the integral6

J =

∫ 2π

0
dσ1(ẋi ◦ ẏ1)D(xi − y1), (3.30)

where D(x) is the usual Feyman propagator. When we shrink the upper circle to a point,

the logarithmic behavior can originate only from IYup. The contribution IYdown yields

analogous behavior when we shrink the lower circle. However, when evaluating IYup, we

also encounter divergences at coincident points (τ1 → τ2) in the integration over the upper

circuit. This singularity though is compensated by the standard ultraviolet-divergence of

the self-energy graph: half of diagram Budiag cancels the divergence for τ1 → τ2, while

the other half cancels the same singularity in IYdown for σ1 → σ2. Therefore, in order to

safely extract the logarithmic behavior when we shrink the circuit to zero, we have to first

realize this cancellation.

To begin with, performing a trivial integration by parts, we can rewrite IYup in the

following form

IYup=
λ3J

8N3

[∫ 2π

0
dτ1dτ2dτ3dσ2ε(τ1, τ2, τ3){(ẋ1 ◦ ẏ2)2ẋ2 · ∂y2−(ẋ1 ◦ ẋ2)ẏ2 · ∂x2}I1(x1, x2, y2)+

− 2

∫ 2π

0
dτ1dτ2dσ2(ẋ1 ◦ ẏ2)I1(x1, x2, y2) +

1

2

∫ 2π

0
dτ1dτ3dσ2(ẋ1 ◦ ẏ2)I1(x1, x1, y2)

]
.

(3.31)

The singular part for coincident points is now singled out in the last term, which is pro-

portional to I1(x1, x1, y2). Since

Budiag = − λ3J

8N2

∫ 2π

0
dτ1dτ3dσ2(ẋ1 ◦ ẏ2)I1(x1, x1, y2). (3.32)

half of Budiag exactly cancels the singularity present in Yup and we are left with

IYup=
λ3J

8N2

[∫ 2π

0
dτ1dτ2dτ3dσ2ε(τ1, τ2, τ3){(ẋ1 ◦ ẏ2)2ẋ2 · ∂y2−(ẋ1 ◦ ẋ2)ẏ2 · ∂x2}I1(x1, x2, y2)−

−2

∫ 2π

0
dτ1dτ2dσ2(ẋ1 ◦ ẏ2)I1(x1, x2, y2)

]
.

(3.33)

6This integral is independent of τi, namely it is constant, because the integrand is function only of σ1−τi

and we are integrating a periodic function over the interval [0, 2π].
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Figure 7. Cylinder amplitude

This expression does not exhibit any singularity at coincident points. The logarithmic part

arising when we shrink the upper circle to a point is then obtained by replacing I1 in the

above expression with the Ising.
1 found in appendix A. Next we Taylor-expand in r and

integrate over the circuits. At leading order in r we find

IYsing.
up = −

r4 cos4
(

θ2
2

)
log(r)

256π2
+O(r5) (3.34)

Let us now sum all the different contributions at leading order in r

Xsing.+IYsing.
up +A1

sing.+A2
sing. =

r4 cos4
(

θ2
2

)
log(r)

π2

(
5

768
− 1

256
+

1

512
− 7

1536

)
= 0 !

(3.35)

Namely, we have verified that the logarithmic singularities cancel at the first non trivial

order. This implies that the effective anomalous dimension of the operator OF defined

in the previous section vanishes at one-loop, supporting the idea that this operator is

actually protected.

As we will show in the next section, this result is consistent with the result coming

from the zero instanton expansion of QCD2.

4 The conjectured matrix model description

In the previous sections we have tried to argue that the correlator of two (or more) Wilson-

loops of type (1.1) might be an exactly solvable quantity since it belongs to a topological

sector of N = 4. This idea, in fact, passes a certain number of non trivial tests: [a] the

observable is 1/8 BPS independently of the position and the form of the loops [5]; [b]

there is a candidate topological twist of the N = 4 theory, where one of the supercharges

preserving the correlator becomes a scalar [5]; [c] finally, if we compute the behavior of

the correlator when one of the circuits shrinks to a point we get a smooth limit with

no logarithmic singularity. This last property in particular, should be contrasted with

what happens for the correlator of two circular Maldacena-Wilson loops [19]: there the

logarithmically singular behavior was present and signaled the impossibility of a matrix

model description for this observable [19].

In this section we shall accept this idea, and focus our attention on the problem of

writing a general formula for the correlator of two Wilson-loops. The starting point is

to recall that the expectation value of one Wilson-loop appears to be computed by the

matrix model describing the zero-instanton sector of a Wilson loop for QCD2 on the two

sphere [5, 10, 11]. Since the single Wilson loop and the correlator generically share the
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same symmetries we expect that this equivalence also extends to the case of correlators.

Therefore we conjecture that the correlator of two Wilson loops of type (1.1) is given by

the multi-matrix model, which evaluates the zero-instanton sector of the correlator of two

loops for QCD2 on S2.

The construction of this matrix model is quite simple since QCD2 is an almost topo-

logical theory (it is invariant under area-preserving diffeomorphisms) and its observables

can be computed with the help of some simple string-like Feynman-rules [26]. For the

present computation we need just three ingredients: the cylinder amplitude (heat-kernel

propagator), the disc and the Feynman rule for the observable, i.e. the Wilson loop. The

first quantity is represented in figure 7 and is given by

K(A;U1, U2) = 〈U2|e−
g2A△

2 |U1〉 =
∑

R

χR(U1)χ
†
R(U2)e

−
g2A

2
C2(R), (4.1)

where A is the area of the cylinder and the sum runs over all the representations R of

U(N). The amplitude also depends on the two holonomies U1 and U2 defined on the two

borders of the cylinder. There is in fact a dual representation for the cylinder amplitude

where the sum over representations is replaced with a sum over the instanton charges

K(A;U1, U2)=
∑

P∈SN

(g2A)−N/2

J(θi)J(φi)

∑

ℓ∈ZN

(−1)P+(N−1)
P

ℓiexp

(
− 1

2g2A

N∑

i=1

(φi−θP (i)+2πiℓi)
2

)
,

(4.2)

where {eiθi} and {eiφi} are the eigenvalues of the matrices U1 and U2 respectively and

J(θi) =
∏

i≤j

2 sin

(
θi − θj

2

)
.

The disc is obtained from (4.1) by choosing one of the two holonomies to be trivial - namely

equal to the identity. Finally, the insertion of a Wilson loop with winding number n is

realized by introducing the factor Tr(Un) at the border of the cylinder. The amplitude for

the correlator of two non-intersecting loops with winding numbers n1 and n2 is schemat-

ically represented in figure 8, and the corresponding expression is given by the following

two-matrix integral over the unitary matrices:

W̃(A1, A2) =
1

N2

∫
DU1DU2Tr(Un1

1 )Tr(Un2
2 )K(A1;1, U1)K(A3;U1, U2)K(A2;U2,1)

=
1

N2

∑

P∈SN

∑

ℓ,m,s∈ZN

∫
dNθdNφJ2(θi)J

2(φi)




N∑

r,s=1

ein1θr+in2φs


 (4.3)

×(g2A1)
−N2

2

J(θi)
(−1)(N−1)

P
i ℓi∆(θi + 2πℓi) exp

(
− 1

2g2A1

N∑

i=1

(θi + 2πℓi)
2

)

×(g2A3)
−N/2

J(θi)J(φi)
(−1)P+(N−1)

P
si exp

(
− 1

2g2A3

N∑

i=1

(φi − θP (i) + 2πisi)
2

)

×(g2A2)
−N2

2

J(φi)
(−1)(N−1)

P
j mj∆(φj +2πmj)exp

(
− 1

2g2A2

N∑

i=1

(φi+2πmi)
2

)
,
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Figure 8. The string-like Feynman-diagram for the correlator of two Wilson-loops.

∆ being the Vandermonde determinant. The amplitude W̃(A1, A2) is related to the true

correlator by the relation W̃(A1, A2) = ZW(A1, A2), where Z is the partition function

of QCD2 on the sphere. We can extend the region of integration over the entire R
2N by

means of the sum over ℓ and m and we can rewrite the above expression as

W̃(A1, A2) =
(g4A1A2)

−N2

2 (g2A3)
−N

2

N2

∑

P∈SN

∑

s∈ZN

(−1)P+(N−1)
P

si×

×
∫

R2N

dNθdNφ




N∑

r,s=1

ein1θr+in2φs


×

×∆(θi)∆(φi)exp

(
− 1

2g2A1

N∑

i=1

θ2
i −

1

2g2A3

N∑

i=1

(φi−θP (i)+2πisi)
2− 1

2g2A2

N∑

i=1

φ2
i

)
.

(4.4)

The result (4.4) is the exact amplitude and it contains all instantonic corrections. To single

out the zero-instanton sector of this amplitude it is sufficient to consider the case where all

instanton numbers si vanish. If we introduce the diagonal matrices Θ = diag(θ1, . . . , θN )

and Φ = diag(φ1, . . . , φN ), using the Itzykson-Zuber integration formula and defining the

hermitian matrices V1 = U−1ΘU and V2 = V ΦV −1, we can recast the original integral as

the following hermitian two matrix model for the correlator of two Wilson loops7

W (A1, A2) =
1

CNN2

∫
DV1DV2e

−
A1+A3

2g2A1A3
Tr(V 2

1 )−
A2+A3

2g2A2A3
Tr(V 2

2 )+ 1
g2A3

Tr(V1V2)

× Tr(ein1V1)Tr(ein2V2)

=
1

CNN2

∫
DV1DV2e

− 1
2g2A1

Tr(V 2
1 )− 1

2g2A2
Tr(V 2

2 )− 1
2g2A3

Tr((V1−V2)2)

× Tr(ein1V1)Tr(ein2V2), (4.5)

7 The generalization of this result to the case of n loops is trivial

W(A1, . . . , An) =
1

CNNn

Z

DV1 . . . DVne
−

P

i=1,n
1

2g2Ai
Tr(V 2

i )−
Pn−1

j=1
1

2g2Aj,j+1
Tr((Vj−Vj+1)2)

× Tr(eir1V1) · · ·Tr(eirnVn),

where A1, An are the areas enclosed respectively by the first and and last loop (by ”enclosed” we mean the

region of S2 not containing other loops) and Ai,i+1 is the area between the i−th and (i + 1)−th loop.
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where the normalization is chosen to be

CN =

∫
DV1DV2e

−
A1+A3

2g2A1A3
Tr(V 2

1 )−
A2+A3

2g2A2A3
Tr(V 2

2 )+ 1
g2A3

Tr(V1V2)
. (4.6)

Actually, in the sector si = 0 of (4.4), the angular integration can be performed by means

of an expansion in terms of Hermite polynomials and by exploiting the relation between

integrals over Hermite polynomials and Laguerre polynomials. Then one finds the following

finite N closed expression for the connected correlator

W (A1, A2) −W (A1)W (A2) =

=
1

N2
e−

(A1A2(n1+n2)2+A3(n2
1A1+n2

2A2))g2

2A

×L1
N−1

(
g2(A3n1+A2(n1+n2))(A1(n1+n2)+A3n2)

A

)
− 1

N2
e−

(A1(A2+A3)n
2
1+A2(A1+A3)n

2
2)g2

2A ×

(4.7)

×
N∑

i1,i2=1

(
−g

2n1n2A1A2

A

)i2−i1 (i1−1)!

(i2−1)!
Li2−i1

i1−1

(
g2n2

2A2(A3+A1)

A

)
Li2−i1

i1−1

(
g2n2

1A1(A3+A2)

A

)
,

where A = A1 +A2 +A3 is the total area of the sphere. For small g this expression can be

expanded in a power series and one finds

W (A1, A2) −W (A1)W (A2) = −A1A2g
2n1n2

NA
+ (4.8)

+
A1A2(A1A2(n

2
1 + n2

2 + n1n2) +A3(A1n
2
1 +A2n

2
2))g

4n1n2

2A2
+

−g6n1n2

(
A1

3A2(A2+A3)
2
(
2N3+N

)
n4

1

24A3N2
+
A1

3A2
2(A2+A3)

(
2N3+N

)
n2n

3
1

12A3N2
+

+
A1

2A2
2
(
3A3(A2 +A3)N

2 +A1

(
3A3N

2 +A2

(
4N2 + 1

)))
n2

2n2
1

12A3N
+

+
A1

2A2
3(A1+A3)

(
2N3+N

)
n2

3n1

12A3N2
+
A1A2

3(A1+A3)
2
(
2N3+N

)
n2

4

24A3N2

)
+O(g7).

This result, after decompactifying the sphere, agrees with the perturbative results we have

obtained up to O(g6) from Feynman graph calculations using the Mandelstam-Leibbrandt

prescription for the vector propagator in light-cone coordinates [18]. Let us compare the

perturbative result (4.8) with the actual computation in N = 4 done in section 3. After

performing the standard redefinition g2 7→ −g2/A and setting n1 = n2 = 1, we find com-

plete agreement up to order g4. Notice, moreover, that the agreement with QCD2 demands

the absence of logarithmic singularities when the area of one of the loops is small, to all

orders in perturbation theory. Our g6 result of section 3 is consistent with this prediction.

In order to analyse the large N limit, we can write a simple compact representation

for the connected correlator in N = 4 SYM by exploiting a contour representation of the
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Laguerre polynomials

W (A1, A2) −W (A1)W (A2) =
n1n2

N2

∫

C1

dw1

2πi

∫

C2

dw2

2πi

e
w1+w2+

λ(Ã1A1w2n2
1+Ã2A2n2

2w1)
A2w2w1 Ã2A1(

Ã2n2w1 −A1n1w2

)2 ,

(4.9)

where Ã1 = A − A1 and Ã2 = A − A2. This expression can be computed as an infinite

series of Bessel functions. We limit our attention to the case n1 = n2 = 1 and are actually

interested in the normalized correlator, which is given by

Wconn.

W1W2
=

λ

N2A2
Ã1Ã2

∞∑

k=1

k

(√
A1A2

Ã1Ã2

)k+1 Ik

(
2

√
λA2Ã2

A2

)

I1

(
2

√
λA2Ã2

A2

)
Ik

(
2

√
λA1Ã1

A2

)

I1

(
2

√
λA1Ã1

A2

) . (4.10)

In the next section we will be interested in comparing this result with the strong coupling

prediction of super-gravity. For this reason, we have to expand the above result for large

λ. This can easily be done by recalling that

Ik (z)

I1 (z)
= 1 +O

(
1

z

)
. (4.11)

Then the correlator in the strong coupling regime becomes

Wconn.

W1W2
∼ λ

N2

Ã1Ã2

A2


A1A2

Ã1Ã2

+ 2

(√
A1A2

Ã1Ã2

)3

+ · · ·


 . (4.12)

The first term in the expansion corresponds to the U(1) factor present in U(N) and we

shall drop it since it is not generally considered in the super-gravity analysis. The first non

trivial term which can be compared with super-gravity is the second one.

5 Correlator at strong coupling

We can also use the AdS/CFT correspondence [28] to compute the correlator of the lati-

tudes at strong coupling, in the limit where they are well separated compared to their radii,

i.e. in the limit that they migrate to opposite poles of the sphere. In this limit the corre-

lator is dominated by the exchange of light SUGRA modes between the two worldsheets

describing the Wilson loops at strong coupling [21, 27, 29, 30].

Sometimes, as has been the case for certain chiral primary operators, two point func-

tions with the Wilson loop can be computed exactly [27, 29] in the gauge theory and

succesfully compared at strong coupling to a SUGRA calculation of the same quantity.

Indeed, by taking the “square-root” of the contribution to the correlator of two Wilson

loops from a specific SUGRA mode, the two-point function of the Wilson loop with the

operator dual to that mode is recovered [21]. In this section we will present a striking

agreement between the exchange of certain such SUGRA modes and the strong-coupling

limit of the QCD2 result (4.10). In order to prove that the QCD2 result truly captures the

correlator at strong coupling, cancellations between further SUGRA modes will have to be

demonstrated. We leave this to a further publication [18].
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5.1 An intriguing connection

There appears to be a rather intimate connection between the QCD2 result presented in

section 4 and the two-point functions of latitude Wilson loops with chiral primary operators

built upon the scalar field Φ3. In the work [27] it was shown that

〈W ÕJ(x)〉
〈W 〉 =

1

2N

(
R sin θ

x2

)J √
Jλ sin θ

IJ

(√
λ sin θ

)

I1

(√
λ sin θ

) , (5.1)

where W is a latitude Wilson loop at polar angle θ and

ÕJ(x) =
1√
Jλ

Tr (Φ3 + iΦ4)
J , (5.2)

where x ≫ R sin θ measures the perpendicular distance between the operator and the

loop. This demonstrates that the matrix model which yields (1.2) also captures two-point

functions with those CPO’s sharing a minimum amount of SUSY with the latitude Wilson

loop.

Let us look then at the contribution of the ÕJ to the correlator of two latitudes, at

polar angles θ0 and θ1, taken near opposite poles of the sphere to enforce x≫ R sin θ. Note

that x = R cos θ0 −R cos θ1, we then have

〈W0W1〉
〈W0〉〈W1〉

∣∣∣∣∣ eOJ

=
λ sin θ0 sin θ1

4N2

∞∑

J=2

J

(
sin θ0 sin θ1

(cos θ0 − cos θ1)2

)J

×
IJ

(√
λ sin θ0

)

I1

(√
λ sin θ0

)
IJ

(√
λ sin θ1

)

I1

(√
λ sin θ1

) .
(5.3)

This expression is valid strictly at leading order in the large separation limit. The reason

for this is that (5.3) ignores quantum corrections between the propagators joining the

operator to the Wilson loop; this is only valid in the strict large separation limit as shown

in [23, 27]. The expression (5.3) bears a striking resemblance to the QCD2 result (4.10). In

fact, the only difference lies in the factor in round parentheses which is risen to the power

J . However, taking the large-separation limit of this factor, that difference disappears

and (5.3) is exactly equal to (4.10). Thus the QCD2 result gives, in the large-separation

limit, exactly the contribution of the exchange of (5.2). This agreement is valid at any

value of the coupling, and indeed, in [27] it was shown that at strong coupling the result

is recovered from supergravity.

At leading order in weak coupling, this agreement is puzzling for the following reason.

It is not exactly the operator (5.2) which is present in the latitudes’ OPE, since there is

no coupling to Φ4. Indeed, the calculation of the correlator given in (2.11) shows that all

the operators present in the latitude’s OPE (2.9) participate in the correlator at this order

in λ. It is therefore a curious coincidence that (5.2) produces the same contribution at

weak coupling (i.e. J = 2) as the true composite operator (2.9) present in the actual OPE.

Before addressing this issue further, we present a remarkable strong coupling calculation.
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It is interesting to go beyond the strict large-separation limit, and test the QCD2

result (4.10) to higher orders in the shrinking radii of the two latitudes. It turns out that at

strong coupling, the associated SUGRA calculation giving this information is tractable. In

keeping with the intriguing connection between the contribution of (5.2) to the correlator

and the QCD2 result, we begin by computing the exchange of the SUGRA modes dual

to (5.2) in an expansion about small latitude radii θ0 and θ1 (where the polar angle of the

latitude at the south pole is given by π − θ1).

The supergravity modes dual to (5.2) are fluctuations of the RR 5-form as well as the

spacetime metric. They are by now very well known, and details can be found in [21, 22,

29, 30, 32]. The fluctuations of the metric are

δgµν =

[
−6J

5
gµν +

4

J + 1
D(µDν)

]
sJ(x)Y J(Ω),

δgαβ = 2J gαβ s
J(x)YJ(Ω), (5.4)

where µ, ν are AdS5 and α, β are S5 indices. The symbol x indicates coordinates on AdS5

and Ω coordinates on the S5. The bulk-to-bulk scalar propagator for the field sJ(x) is8

P (x, x̄) =
α0

BJ
W J

2F1(J, J − 3/2, 2J − 3; −4W ) (5.5)

where in an AdS5 given by ds2 = (dx2
0 + dx2

i )/x
2
0, W = x0x̄0/((x0 − x̄0)

2 +(xi − x̄i)
2). The

full details of the calculation will be presented in [18], however it is essentially that found

in [27]. There, the strict large-separation limit was employed by setting the hypergeometric

function to 1. Here we keep higher terms in the expansion. The results are as follows

J = 2 :
〈W (x)W (x̄)〉
〈W (x)〉〈W (x̄)〉 =

λ

8N2

[
θ3
0 θ

3
1

22
+
θ3
0 θ

7
1 + θ7

0 θ
3
1

5 · 3 · 26
+
θ5
0 θ

5
1

26
+
θ3
0 θ

9
1 + θ9

0 θ
3
1

7 · 33 · 26

+
θ5
0 θ

7
1 + θ7

0 θ
5
1

3 · 27
+
θ6
0 θ

6
1

52 · 3−
θ7
0 θ

6
1+θ6

0 θ
7
1

5 · 3 · 23
+O(θ14)

]
,

J = 3 :
〈W (x)W (x̄)〉
〈W (x)〉〈W (x̄)〉 =

λ

32N2

[
3 θ4

0 θ
4
1

8
+
θ4
0 θ

6
1 + θ6

0 θ
4
1

25
+

3 (θ4
0 θ

8
1 + θ8

0 θ
4
1)

5 · 27

+
5θ6

0θ
6
1

3·26
+

33θ7
0θ

7
1

72 ·52
+

(θ6
0θ

8
1+θ8

0θ
6
1)

5 · 25
+

23(θ4
0θ

10
1 +θ10

0 θ
4
1)

7 · 5 · 33 · 27
− 32(θ7

0θ
8
1+θ8

0θ
7
1)

7 · 5 · 25
+O(θ16)

]
,

J = 4 :
〈W (x)W (x̄)〉
〈W (x)〉〈W (x̄)〉 =

λ

256N2

[
θ5
0 θ

5
1 +

θ5
0 θ

7
1 + θ7

0 θ
5
1

3 · 2 +
θ5
0 θ

9
1 + θ9

0 θ
5
1

32 · 22
+

13 θ7
0 θ

7
1

32 · 24

+ O(θ16)

]
.

(5.6)

The QCD2 result (4.10) in the large λ limit is

〈W (x)W (x̄)〉
〈W (x)〉〈W (x̄)〉

∣∣∣∣∣
QCD2

=
λ sin θ0 sin θ1

4N2

∞∑

J=1

J tanJ θ0
2

tanJ θ1
2
. (5.7)

8See [21, 22, 29, 30, 32] for the definitions of α0 and BJ .
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Ignoring J = 1, we may expand in θ order-by-order in J :

J = 2 :
〈W (x)W (x̄)〉
〈W (x)〉〈W (x̄)〉

∣∣∣∣∣
QCD2

=
λ

8N2

[
θ3
0 θ

3
1

22
+
θ3
0 θ

7
1 + θ7

0 θ
3
1

5 · 3 · 26
+
θ3
0 θ

9
1 + θ9

0 θ
3
1

7 · 33 · 26
+ O(θ14)

]
,

J = 3 :
〈W (x)W (x̄)〉
〈W (x)〉〈W (x̄)〉

∣∣∣∣∣
QCD2

=
λ

32N2

[
3 θ4

0 θ
4
1

8
+
θ4
0 θ

6
1 + θ6

0 θ
4
1

25
+

3 (θ4
0 θ

8
1 + θ8

0 θ
4
1)

5 · 27

+
θ6
0 θ

6
1

3 · 27
+

(θ6
0 θ

8
1 + θ8

0 θ
6
1)

5 · 29
+

23 (θ4
0 θ

10
1 + θ10

0 θ4
1)

7 · 5 · 33 · 27
+ O(θ16)

]
,

J = 4 :
〈W (x)W (x̄)〉
〈W (x)〉〈W (x̄)〉

∣∣∣∣∣
QCD2

=
λ

256N2

[
θ5
0 θ

5
1 +

θ5
0 θ

7
1 + θ7

0 θ
5
1

3 · 2 +
θ5
0 θ

9
1 + θ9

0 θ
5
1

32 · 22
+

θ7
0 θ

7
1

32 · 22

+ O(θ16)

]
.

(5.8)

There is a remarkable matching of highly non-trivial terms between these two calculations!

The difference between the two calculations sets-in quite late

(SUGRA − QCD2)J=2 =
λ

8N2

[
θ5
0 θ

5
1

26
+
θ5
0 θ

7
1 + θ7

0 θ
5
1

3 · 27
+
θ6
0 θ

6
1

52 · 3 − θ7
0 θ

6
1 + θ6

0 θ
7
1

5 · 3 · 23
+ O(θ14)

]
,

(SUGRA − QCD2)J=3 =
λ

32N2

×
[
3 θ6

0 θ
6
1

27
+

3 (θ6
0 θ

8
1+θ8

0 θ
6
1)

29
+

33 θ7
0 θ

7
1

72 · 52
− 32 (θ7

0 θ
8
1+θ8

0 θ
7
1)

7 · 5 · 25
+O(θ16)

]
,

(SUGRA − QCD2)J=4 =
λ

256N2

[
θ7
0 θ

7
1

24
+ O(θ16)

]
.

(5.9)

Although we have considered values of J up to J = 4, we expect a similar pattern for

arbitrary J .

5.2 Other modes

The remarkable agreement displayed in the previous section does not prove that the QCD2

result captures the correlator of the latitudes at strong coupling. Beyond the issue of the

discrepancy at order θ5
0θ

5
1, the catch is that the SUGRA spectrum contains two other modes

which couple to the string worldsheets and also produce θ3
0θ

3
1 terms, thereby potentially

spoiling the agreement with the QCD2 result. These are the Kaluza-Klein modes of the

NS-NS B-field of type-IIB supergravity, and have been described in [32], c.f. their equation

(2.48) and what follows it. There is a fluctuation of the B-field with both legs in the

S5 which is described by a scalar of mass-squared −3 (corresponding to a gauge theory

operator of protected dimension 3) given by

δBαβ = ak
−(x)Y k,−

[αβ](Ω), m2
ak
−

= k2 − 4, (5.10)
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with k = 1. There is also the fluctuation of the B-field with both legs in the AdS5 portion

of the geometry δBµν , which has been discussed in [31]. It has the Kaluza-Klein expansion

δBµν = ak
µν(x)Y

k(Ω), m2
ak

µν
= k2, (5.11)

and the leading k = 1 harmonic corresponds to the following protected dimension 3 operator

(where A,B are SU(4) indices)

2iΦABF+
µν + ψ̄Aσµν ψ̄

B . (5.12)

These contributions must cancel out if the QCD2 result is to hold. Beyond these modes,

there are also fluctuations of the dilaton, massless vector, and massless tensor which provide

contributions which lead as θ4
0θ

4
1 and must therefore also find a way to cancel each other,

should the QCD2 result truly describe the correlator at strong coupling. Indeed this is the

reflection at strong coupling of the curiosity of the fact that the operators of classical dimen-

sion 3 and 4 contributing to the correlator at weak coupling seem to have the same effect

as replacement by (5.2) (with J = 2). The full calculation of these SUGRA modes, and the

question of whether or not they cancel, will be explored in a companion publication [18].

The matrix model result (1.2) contains a rescaled coupling constant λ′ = λ sin2 θ. The

two point function of the latitude with the CPO (5.2) leads as λ′ but ends-up as
√
λ′ at

strong coupling. This explains why in the OPE the operator TrΦ2
3 is weighted by θ4 but

ends-up contributing as θ3 at strong coupling. The first descendent of this operator appear-

ing in the OPE of the latitude is Tr Φ3∂3Φ3 and comes with weight θ6, thus one would expect

its contribution at strong coupling to be θ5, potentially explaining why the discrepancy be-

tween the QCD2 result and the contribution from CPO’s built on Φ3 sets-in at order θ5
0θ

5
1.
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A Perturbation theory integrals

The integral I1 defined in (3.15), for example, was computed in [10] and a useful represen-

tation for the final result is

I1(x1, x2, x3) =
1

64π4

∫ 1

0
dα

1

(y − αx)2
log

[
α[(x− y)2 − y2] + y2

α(1 − α)x2

]
, (A.1)

where x = x1 − x2 and y = x3 − x2. The only logarithmic behavior in this integral arises

when x1 and x2 approach the same point x0 (namely |x| → 0), and is given by

Ising.
1 = − 1

64π4

∫ 1

0
dα

1

(y − αx)2
log x2 = − 1

64π4

∫ 1

0
dα

log(x1 − x2)
2

((x3 − x2) − α(x1 − x2))2
. (A.2)
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Next we consider the integral

I(4)(x1, x2, x3, x4) =
1

(4π2)4

∫
d4z

(x1 − z)2(x2 − z)2(y1 − z)2(y2 − z)2
. (A.3)

It is well-known that this integral can be computed in terms of I1 [34]. In fact if we define

x̄µ
1 =

(x1 − y2)
µ

(x1 − y2)2
, x̄µ

2 =
(x2 − y2)

µ

(x2 − y2)2
, x̄µ

3 =
(y1 − y2)

µ

(y1 − y2)2
, (A.4)

we find

I(4)(x1, x2, x3, x4) =
x̄2

1x̄
2
2x̄

2
3

(4π2)4

∫
d4z

(x̄1 − z)2(x̄2 − z)2(x̄3 − z)2
=
x̄2

1x̄
2
2x̄

2
3

4π2
I1(x̄1 − x̄2, x̄3 − x̄2).

(A.5)

Then

I(4)sing.(x1, x2, y1, y2) = − log(x1 − x2)
2

256π6
×

×
∫ 1

0

dα

(1 − α)(y1 − x2)
2(y2 − x1)

2 − α(1 − α)(x1 − x2)
2(y1 − y2)

2 + α(y1 − x1)
2(y2 − x2)

2
.

(A.6)

For our goals, the most convenient way to compute the integral Sµ defined in (3.27) is to

use the technique of [35], which allows us to reduce the tensor integrals to scalar integrals

in higher space-time dimensions. We shall perform this reduction in 2ω dimensions and for

arbitrary powers of the denominators. The final result is very nice and compact

4∏

i=1

Γ(ai)

4πai+1

∫
wµd2ωw

((x1−w)2)a1((x2−w)2)a2((x3−w)2)a3((x4−w)2)a4
=

4∑

j=1

xµ
j S(ω+1; ai+δij)

(A.7)

where

S
(2ω)(ω; ai) =

4∏

i=1

Γ(ai)

4πai+1

∫
d2ωw

((x1 − w)2)a1((x2 − w)2)a2((x3 − w)2)a3((x4 − w)2)a4
. (A.8)

In computing A1 we also need the derivative with respect to xν
2 of the above expression.

After some manipulation this derivative can be arranged as follows

4∏

i=1

Γ(ai)

4πai+1

∂

∂xν
2

∫
wµd2ωw

((x1 − w)2)a1((x2 − w)2)a2((x3 − w)2)a3((x4 − w)2)a4
=

= δµν
S(ω + 1; ai + δi2) + 2π

4∑

k=1

4∑

j=1

xµ
j (xk − x2)

ν
S(ω + 2; ai + δij + δi2 + δki).

(A.9)

Finally, the only other ingredient necessary for our calculation is the behavior of the integral

S(2ω; ai) when x1 and x2 approach the same point x0.

S(2ω; ai) =
Γ (ω − a1) Γ (ω − a2) Γ(a3)Γ(a4)Γ (a1 + a2 − ω)

256π

4
X

i=1

ai+4−ω
Γ (2ω − a1 − a2)

((x1 − x2)
2)(ω−a1−a2)

((x3)2)a3((x4)2)a4
×

×
[
1+2

(
a3
x3

x2
3

+a4
x4

x2
4

)
·
(
(x2−x0)+

ω − a2

2ω−a1−a2
(x1−x2)

)
+O((x1−x2)

2)

]
.

(A.10)
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